210 research outputs found

    Tiling Proofs of Recent Sum Identities Involving Pell Numbers

    Get PDF
    In a recent note, Santana and Diaz-Barrero proved a number of sum identities involving the well-known Pell numbers. Their proofs relied heavily on the Binet formula for the Pell numbers. Our goal in this note is to reconsider these identities from a purely combinatorial viewpoint. We provide bijective proofs for each of the results by interpreting the Pell numbers as enumerators of certain types of tilings. In turn, our proofs provide helpful insight for straightforward generalizations of a number of the identities

    UK: racial violence and the night-time economy

    Get PDF
    This article examines fifty-five racist attacks over a six-month period in the UK’s night-time economy, showing the risks faced by members of the public and workers at taxi firms, takeaways, convenience stores and service stations. It argues that flexible and highly casualised labour conditions exacerbate the risk of racial violence

    NASA's Carbon Cycle OSSE Initiative - Informing Future Space-Based Observing Strategies Through Advanced Modeling and Data Assimilation

    Get PDF
    Land and ocean carbon sinks absorb half of human CO2 emissions. The fate of these sinks in a changing world is unknown, introducing large uncertainties in climate projections. Satellite measurements of atmospheric CO2 are required to better understand the processes governing carbon uptake. Careful planning of future missions using Observing System Simulation Experiments (OSSEs) can help ensure that they meet the needs of the scientific and policy communities. NASA's Carbon Cycle OSSE Initiative brings together researchers from multiple universities and NASA centers to create model-derived data products in support of informed mission planning

    Functional Analysis and Fine Mapping of the 9p22.2 Ovarian Cancer Susceptibility Locus.

    Get PDF
    Genome-wide association studies have identified 40 ovarian cancer risk loci. However, the mechanisms underlying these associations remain elusive. In this study, we conducted a two-pronged approach to identify candidate causal SNPs and assess underlying biological mechanisms at chromosome 9p22.2, the first and most statistically significant associated locus for ovarian cancer susceptibility. Three transcriptional regulatory elements with allele-specific effects and a scaffold/matrix attachment region were characterized and, through physical DNA interactions, BNC2 was established as the most likely target gene. We determined the consensus binding sequence for BNC2 in vitro, verified its enrichment in BNC2 ChIP-seq regions, and validated a set of its downstream target genes. Fine-mapping by dense regional genotyping in over 15,000 ovarian cancer cases and 30,000 controls identified SNPs in the scaffold/matrix attachment region as among the most likely causal variants. This study reveals a comprehensive regulatory landscape at 9p22.2 and proposes a likely mechanism of susceptibility to ovarian cancer. SIGNIFICANCE: Mapping the 9p22.2 ovarian cancer risk locus identifies BNC2 as an ovarian cancer risk gene.See related commentary by Choi and Brown, p. 439

    Seasonal pattern of regional carbon balance in the central Rocky Mountains from surface and airborne measurements

    Get PDF
    [1] High-elevation forests represent a large fraction of potential carbon uptake in North America, but this uptake is not well constrained by observations. Additionally, forests in the Rocky Mountains have recently been severely damaged by drought, fire, and insect outbreaks, which have been quantified at local scales but not assessed in terms of carbon uptake at regional scales. The Airborne Carbon in the Mountains Experiment was carried out in 2007 partly to assess carbon uptake in western U.S. mountain ecosystems. The magnitude and seasonal change of carbon uptake were quantified by (1) paired upwind-downwind airborne CO2 observations applied in a boundary layer budget, (2) a spatially explicit ecosystem model constrained using remote sensing and flux tower observations, and (3) a downscaled global tracer transport inversion. Top-down approaches had mean carbon uptake equivalent to flux tower observations at a subalpine forest, while the ecosystem model showed less. The techniques disagreed on temporal evolution. Regional carbon uptake was greatest in the early summer immediately following snowmelt and tended to lessen as the region experienced dry summer conditions. This reduction was more pronounced in the airborne budget and inversion than in flux tower or upscaling, possibly related to lower snow water availability in forests sampled by the aircraft, which were lower in elevation than the tower site. Changes in vegetative greenness associated with insect outbreaks were detected using satellite reflectance observations, but impacts on regional carbon cycling were unclear, highlighting the need to better quantify this emerging disturbance effect on montane forest carbon cycling

    Allele-Specific HLA Loss and Immune Escape in Lung Cancer Evolution

    Get PDF
    Immune evasion is a hallmark of cancer. Losing the ability to present neoantigens through human leukocyte antigen (HLA) loss may facilitate immune evasion. However, the polymorphic nature of the locus has precluded accurate HLA copy-number analysis. Here, we present loss of heterozygosity in human leukocyte antigen (LOHHLA), a computational tool to determine HLA allele-specific copy number from sequencing data. Using LOHHLA, we find that HLA LOH occurs in 40% of non-small-cell lung cancers (NSCLCs) and is associated with a high subclonal neoantigen burden, APOBEC-mediated mutagenesis, upregulation of cytolytic activity, and PD-L1 positivity. The focal nature of HLA LOH alterations, their subclonal frequencies, enrichment in metastatic sites, and occurrence as parallel events suggests that HLA LOH is an immune escape mechanism that is subject to strong microenvironmental selection pressures later in tumor evolution. Characterizing HLA LOH with LOHHLA refines neoantigen prediction and may have implications for our understanding of resistance mechanisms and immunotherapeutic approaches targeting neoantigens. Video Abstract [Figure presented] Development of the bioinformatics tool LOHHLA allows precise measurement of allele-specific HLA copy number, improves the accuracy in neoantigen prediction, and uncovers insights into how immune escape contributes to tumor evolution in non-small-cell lung cancer
    corecore